

a)

b)

© White Rose Maths 2019

Equivalent fractions (1)

Shade the bar models to represent the equivalent fractions.

White

 $\frac{1}{2} = \frac{5}{10}$

 $\frac{4}{5} = \frac{8}{10}$

4

Here is a fraction wall.

$\frac{1}{2}$				<u>1</u> 2					
<u>_1</u> 3	3				<u> </u> }			-	<u>1</u> 3
<u>1</u> 4			<u>1</u> 4			<u>1</u> 4			<u>1</u> 4
<u>1</u> 5		<u>1</u> 5		, 	<u>1</u> 5		<u>1</u> 5		<u>1</u> 5
<u>1</u> 6		<u>1</u> 5		<u>1</u> 6	<u>1</u> 6		<u>1</u> 6	;	$\frac{1}{6}$

Is each statement true or false? Tick your answers.

Write your own equivalent fractions statements. Ask a partner to say if they are true or false.

Are the statements always, som					
Circle your answer.					
Draw a diagram to support you					
a) The greater the numerator, the					
always some					
e-g. $\frac{4}{5} > \frac{1}{5}$ BU					
b) Fractions equivalent to one h					
always some					
e.g. 1/2 (odd numerat					
2 (even numerat					
c) If a fraction is equivalent to be double the numerator.					
always some					
<u>'////////////////////////////////////</u>					
No matter how many par shaded (numerous)					

netimes or never true?

ur answer.

the greater the fraction.

a) Write the fractions in the correct place on the sorting diagram.

	equivalent to 1 3	equivalent to 1		
odd denominator	2 10 10			
even denominator	ઝ ર જ	3/12 4/16		

b) Are any of the boxes empty?

Why do you think this is?

Talk about your answer with a partner.

Find three ways to make the fractions equivalent. 6 Various answers e.g. 2 a) ₌ 10 2 **b)** ; 3 6 **c)** 9 3 9 Eva and Ron have a baguette each. The baguettes are the same size. Eva cuts her baguette into 8 equal pieces. 3 of my equal pieces are equal to 90 6 of Eva's.

Ron has cut his b	aguette into
-------------------	--------------

?

Whitney bakes 26 muffins. Muffins are packed in boxes of 4

a) How many boxes can Whitney fill?

Whitney can fill 6

boxes.

b) How many more muffins does Whitney need to fill another box?

Whitney needs 2 muffins to fill another box. Explain how you know.

She will fill 6 boxes with 2 left over so another

2 are needed to fill the seventh box.

How does writing $\frac{26}{4}$ help you to answer this?

5	Write <, > or = to complete th	า
	a) 2 wholes and 3 quarters	(
	b) 2 wholes and 3 quarters	(
	c) 2 wholes and 3 sixths	(
	d) 2 wholes and 3 eighths	(
	e) $\frac{15}{3}$	(
	f) $\frac{15}{3}$	(
6	Complete the part-whole mode a) $4\frac{3}{5}$ b) $4\frac{3}{5}$ b) $4\frac{3}{5}$ $4\frac{3}{5}$ b) $4\frac{3}{5}$ $3\frac{13}{5}$	

ne statements.

