Shade the bar models to represent the fractions.
a) Shade $\frac{1}{2}$ of the bar model.

b) Shade $\frac{2}{4}$ of the bar model.

c) Shade $\frac{3}{6}$ of the bar model.

d) What do you notice?
e) Write another fraction that is equivalent to $\frac{1}{2}$
(2) Shade $\frac{2}{3}$ of each bar model.
a)

b)

c)

d) Use your answers to parts a), b) and c) to complete the equivalent fractions.

$$
\frac{2}{3}=\frac{\square}{6}=\frac{8}{\square}=\frac{\square}{15}
$$

Mo is finding equivalent fractions.

Do you agree with Mo? \qquad
Explain your answer.
(4) Find the missing numbers.

5 Here is a number line.

a) What fraction is each shape pointing to?

b) A circle is halfway between the triangle and the square. Draw the circle on the number line.
c)

Do you agree with Eva? \qquad
Show how you worked this out.
d) Write three equivalent fractions for each shape.

Compare answers with a partner.

Shade the shapes to help you complete the equivalent fractions.
a)

b)

a) $\frac{1}{3}=\frac{\square}{6}$
b) $\frac{1}{3}=\frac{\square}{9}$
c) $\frac{2}{3}=\frac{4}{\square}$
d) $\frac{2}{3}=\frac{6}{\square}$
e) $\frac{4}{6}=\frac{6}{\square}$
f) $\frac{1}{3}=\frac{\square}{6}=\frac{\square}{9}$
(3) Draw a picture to show that one quarter is equivalent to two eighths.Use the fraction wall to decide whether the fractions are equivalent or not

$\frac{1}{2}$				$\frac{1}{2}$					
$\frac{1}{4}$		$\frac{1}{4}$		$\frac{1}{4}$		$\frac{1}{4}$			
$\frac{1}{5}$		$\frac{1}{5}$		$\frac{1}{5}$		$\frac{1}{5}$		$\frac{1}{5}$	
$\frac{1}{10}$									

Complete the sentences using is or is not
a) $\frac{1}{2}$ \qquad equivalent to $\frac{2}{4}$
b) $\frac{1}{4}$ \qquad equivalent to $\frac{2}{10}$
c) $\frac{1}{2}$ \qquad equivalent to $\frac{5}{10}$
d) $\frac{3}{10}$ \qquad equivalent to $\frac{2}{5}$
e) $\frac{4}{5}$ \qquad equivalent to $\frac{8}{10}$
f) $\frac{3}{4}$ \qquad equivalent to $\frac{4}{5}$

Write some sentences of your own and ask a partner to fill in the gaps.a) What fraction of each shape is shaded?

\square
\square

b) Use the fractions in part a) to complete the sentences.

Compare answers with a partner.
6) The bar model represents $\frac{1}{2}$

Write as many equivalent fractions as you can.

What is the same about all the fractions you have written?
(2) Write $<,>$ or $=$ to compare the fractions.
a) $\frac{1}{5} \bigcirc \frac{3}{5}$
d) $\frac{6}{7} \bigcirc \frac{2}{7}$
b)
e) $\frac{6}{13}$
$\frac{12}{13}$
C) $\frac{2}{7}$
f) $\frac{13}{15}$

$\frac{13}{15}$
(3) Here are some bar models.

a) Shade the bar models to represent the fractions.
b) Write < or > to compare the fractions.

Use the bar models to help you.

What could the missing numerators and denominators be? Give three examples for each.
a) $\frac{1}{5}<\frac{\square}{5}$
$\frac{1}{5}<\frac{\square}{5}$

$$
\frac{1}{5}<\frac{\square}{5}
$$

b) $\frac{1}{5}<\frac{1}{\square}$

Jack is comparing fractions.

Draw bar models to show that Jack is wrong.

\square

6 Sort the fractions into the circles.

| $\frac{5}{6}$ | $\frac{1}{8}$ | $\frac{1}{2}$ |
| :--- | :--- | :--- | | $\frac{2}{6}$ | $\frac{3}{12}$ |
| :---: | :---: |

7) Complete the sentences using the word bank.

a) When fractions have the same denominator, the greater
the \qquad the \qquad the fraction.
b) When fractions have the same numerator, the greater the
\qquad the \qquad the fraction.

Order fractions

a) Shade the bar models to represent the fractions.

b) What do you notice?
c) Complete the sentence.
numerator denominator greater smaller
When fractions have the same__ the the
the fraction.
(2) Write the fractions in order, starting with the smallest.

(3)
a) Shade the bar models to represent the fractions.

b) What do you notice?
c) Complete the sentence.

(4) Write the fractions in order, starting with the greatest.

Tommy and Dora are ordering fractions.

| $\frac{1}{5}$ | $\frac{4}{15}$ |
| :--- | :--- |$\frac{2}{3} \quad$

Tommy

Dora
Who do you agree with? \qquad Talk about it with a partner.

6 a) Complete the equivalent fractions.

b) Write the fractions in order, starting with the greatest.

Dexter and Alex are ordering fractions from smallest to greatest.

$\frac{1}{7}$	$\frac{2}{21}$

a)

Use Dexter's method to put the fractions in order.
b)

Use Alex's method to put the fractions in order
c) Which method do you prefer? Talk about it with a partner.

