## **Equivalent fractions (2)**



Shade the bar models to represent the fractions.





**b)** Shade  $\frac{2}{4}$  of the bar model.



c) Shade  $\frac{3}{6}$  of the bar model.



- d) What do you notice?
- e) Write another fraction that is equivalent to  $\frac{1}{2}$



2 Shade  $\frac{2}{3}$  of each bar model.









c)



**d)** Use your answers to parts a), b) and c) to complete the equivalent fractions.

$$\frac{2}{3} = \frac{\boxed{}}{6} = \frac{8}{\boxed{}} = \frac{\boxed{}}{15}$$





Mo is finding equivalent fractions.







Do you agree with Mo? \_\_\_\_\_

Explain your answer.



Find the missing numbers.





Here is a number line.



a) What fraction is each shape pointing to?

**b)** A circle is halfway between the triangle and the square.

Draw the circle on the number line.



Do you agree with Eva? \_\_\_\_\_

Show how you worked this out.





Compare answers with a partner.









Shade the shapes to help you complete the equivalent fractions.







$$\frac{1}{3} = \frac{\phantom{0}}{\phantom{0}}$$

b)





$$\frac{1}{2} = \frac{\phantom{0}}{\phantom{0}}$$

c)





$$\frac{3}{4} = \frac{\boxed{\phantom{0}}}{\boxed{\phantom{0}}}$$

a)



$$\frac{3}{4} = \frac{\boxed{\phantom{0}}$$

Use the fraction wall to complete the equivalent fractions.

| <u>1</u> 3    |               |  | <u>1</u> 3    |                             |   |          | <u>1</u><br>3               |               |               |  |               |
|---------------|---------------|--|---------------|-----------------------------|---|----------|-----------------------------|---------------|---------------|--|---------------|
| <u>1</u> 6    |               |  | <u>1</u>      | $\frac{1}{6}$ $\frac{1}{6}$ |   | <u>1</u> | $\frac{1}{6}$ $\frac{1}{6}$ |               | <u>1</u>      |  |               |
| <u>1</u><br>9 | <u>1</u><br>9 |  | <u>1</u><br>9 | <u>1</u><br>9               | 1 | <u> </u> | <u>1</u><br>9               | <u>1</u><br>9 | <u>1</u><br>9 |  | <u>1</u><br>9 |

a) 
$$\frac{1}{3} = \frac{6}{6}$$

d) 
$$\frac{2}{3} = \frac{6}{3}$$

**b)** 
$$\frac{1}{3} = \frac{9}{9}$$

e) 
$$\frac{4}{6} = \frac{6}{6}$$

c) 
$$\frac{2}{3} = \frac{4}{3}$$

f) 
$$\frac{1}{3} = \frac{6}{6} = \frac{9}{9}$$

Draw a picture to show that one quarter is equivalent to two eighths.



Use the fraction wall to decide whether the fractions are equivalent or not.

| 1/2  |          |      |          | 1/2      |          |          |          |          |          |
|------|----------|------|----------|----------|----------|----------|----------|----------|----------|
|      | 1/4      |      | <u>1</u> |          |          | <u>1</u> |          | <u>1</u> |          |
| -    | <u> </u> | -    | <u>1</u> | <u>.</u> | <u>1</u> |          | <u>1</u> |          | <u> </u> |
| 1 10 | <u>1</u> | 1 10 | 1 10     | 1 10     | 1 10     | 1 10     | 1 10     | 1 10     | <u>1</u> |

Complete the sentences using is or is not.

- a)  $\frac{1}{2}$  equivalent to  $\frac{2}{4}$
- b)  $\frac{1}{4}$  equivalent to  $\frac{2}{10}$
- c)  $\frac{1}{2}$  equivalent to  $\frac{5}{10}$
- d)  $\frac{3}{10}$  equivalent to  $\frac{2}{5}$
- e)  $\frac{4}{5}$  equivalent to  $\frac{8}{10}$
- f)  $\frac{3}{4}$  equivalent to  $\frac{4}{5}$

Write some sentences of your own and ask a partner to fill in the gaps.



a) What fraction of each shape is shaded?



b) Use the fractions in part a) to complete the sentences.

|  | is equivalent to     |
|--|----------------------|
|  | is equivalent to     |
|  | is not equivalent to |
|  | is not equivalent to |

Compare answers with a partner.





Write as many equivalent fractions as you can.

What is the same about all the fractions you have written?





## **Compare fractions**



Write <, > or = to compare the fractions.

Use the bar models to help you.



 $\frac{5}{8}$ 







Write <, > or = to compare the fractions.

a)  $\frac{1}{5}$ 

d)  $\frac{6}{7}$   $\frac{2}{7}$ 

**b)**  $\frac{2}{5}$ 

e)  $\frac{6}{13}$   $\frac{12}{13}$ 

- c)  $\frac{2}{7}$   $\frac{6}{7}$
- f)  $\frac{13}{15}$   $\frac{13}{15}$

3 Here are some bar models.



- a) Shade the bar models to represent the fractions.
- **b)** Write < or > to compare the fractions.

  Use the bar models to help you.

$$\frac{1}{2} \quad \frac{1}{3} \quad \frac{1}{4} \quad \frac{1}{3} \quad \frac{1}{5} \quad \frac{1}{3}$$

 $\frac{1}{3} \qquad \qquad \frac{1}{2} \qquad \qquad \frac{1}{4} \qquad \qquad \frac{1}{5} \qquad \qquad \frac{1}{5} \qquad \qquad \frac{1}{2}$ 

What could the missing numerators and denominators be? Give three examples for each.



$$\frac{1}{5} < \frac{5}{5}$$

$$\frac{1}{5} < \frac{\boxed{\phantom{0}}}{5}$$

$$\frac{1}{5} < \frac{1}{\boxed{}}$$

$$\frac{1}{5} < \frac{1}{\boxed{}}$$

Jack is comparing fractions.

 $\frac{1}{8}$  is greater than  $\frac{1}{4}$ because 8 is greater than 4



Draw bar models to show that Jack is wrong.





Sort the fractions into the circles.





|   | 6 | 12 | 6 |
|---|---|----|---|
| • |   |    | · |

| greater | than $\frac{1}{6}$ | les | s than $\frac{1}{6}$ |   |
|---------|--------------------|-----|----------------------|---|
|         |                    |     |                      | \ |
|         |                    |     |                      |   |
|         | )                  |     |                      |   |
|         |                    |     |                      | / |
|         |                    |     |                      |   |

Complete the sentences using the word bank.



| greater |
|---------|

| smal | ler |
|------|-----|

a) When fractions have the same denominator, the greater

the \_\_\_\_\_\_ the fraction.

b) When fractions have the same numerator, the greater the

\_\_\_\_\_, the \_\_\_\_\_ the fraction.



## **Order fractions**



a) Shade the bar models to represent the fractions.



- **b)** What do you notice?
- c) Complete the sentence.

Write the fractions in order, starting with the smallest.









- **b)** What do you notice?
- c) Complete the sentence.

| (numerator)    | denominator   | greater | smaller |
|----------------|---------------|---------|---------|
| When fractions | have the same |         | , the   |
|                | the           | the     |         |
| the fraction.  |               |         |         |

Write the fractions in order, starting with the greatest.







| 5 | Tommy | and | Dora | are | ordering | fractions |
|---|-------|-----|------|-----|----------|-----------|

| 1 |  |
|---|--|
| 5 |  |

<u>2</u> 3



I cannot order these fractions because the numerators and denominators are different.

Tommy

I think I can use equivalent fractions to help me.



Who do you agree with? \_

Dora

Talk about it with a partner.



a) Complete the equivalent fractions.

$$\frac{3}{5} = \frac{6}{\boxed{}}$$

$$\frac{2}{9} = \frac{6}{\boxed{}}$$

$$\frac{1}{7} = \frac{6}{\boxed{}}$$

b) Write the fractions in order, starting with the greatest.











smallest



Dexter and Alex are ordering fractions from smallest to greatest.



<u>2</u> 21

<u>2</u> 7

a)



I am going to make the numerators the same.

Dexter

Use Dexter's method to put the fractions in order.

b)

I am going to make the denominators the same.



Use Alex's method to put the fractions in order.

c) Which method do you prefer? Talk about it with a partner.



